

Towards the integration of a pointing-based human-machine interface in an industrial control system compliant with the IEC 61499 standard

Antonio Paolillo¹, Gabriele Abbate¹, Alessandro Giusti¹, Šejla Trakić², Hilmo Dzafic², Artur Fritz² and Jérôme Guzzi¹

¹IDSIA, USI-SUPSI, Lugano, Switzerland ²nxtControl GmbH, Leobersdorf, Austria

55th CIRP Conference on Manufacturing Systems

Interacting with cyber physical systems

- ▶ In the context of *Industry 4.0*, machines need to interact with humans
- Pointing gestures are convenient to implement such human-machine interfaces (HMI)

The pointing-based HMI

Based on a simple user kinematic model and little sensory equipment (IMU at their wrist)

- Using the measured orientation of the wrist, it computes the *pointing ray*
- ► Given the user location, the pointing object is given intersecting the ray with the world

Selection of packages on industrial conveyor belts by pointing

► *LED strips* mounted along the conveyor belts provides the user with visual feedback

Pros and cons of the pointing-based HMI

+ *Portability*: little equipment, almost no infrastructure, computationally light

- + Ease of use: no need the operator to hold specific tools; direct feedback from the plant
- + Scalability: easy to deploy in large plants and by multiple users
- Reactivity: the initialization procedures might be too slow for fast interactions
- *Ambiguity*: pointing complex structures might results in ambiguities
- Ergonomics: long interaction sessions might be tiring for the user

HMI implementation

▶ The pointed-based HMI has been implemented in ROS2 [1] and used in both real and VR scenario [2]

▶ To be deployed in real industries, our HMI has to comply with industrial standards, such as IEC 61499 [3]

Abbate, G., Giusti, A., Paolillo, A., Gromov, B., Gambardella, L., Rizzoli, A.E., Guzzi, J., "PointIt: A ROS toolkit for interacting with co-located robots using pointing gestures," *ACM/IEEE Int. Conf. on HRI*, 2022.
Guzzi, J., Abbate, G., Paolillo, A., Giusti, A., "Interacting with a conveyor belt in virtual reality using pointing gestures," *ACM/IEEE Int. Conf. on HRI*, 2022.
A.Zoitl. "Real-time Execution for IEC 61499." ISA. 2008.

Integration within real industrial automation systems

ROS2 HMI implementation

- Nodes communicate using a pattern based on publisher-subscriber
 Input: packages and belts
- Output: selected packages

IEC 61499 standard

- ► Function blocks use two pathways to exchange data or events
- Input: selected packages
- Output: packages and belts

The oneM2M framework

- ► IoT framework used to interface IEC 61499 with external systems
- ► A HMI node and IEC 61499 function block serve as oneM2M service entity

Testing results

OneM2M bridge performance		
Payload (Bytes)	Max msg rate (Hz)	Latency (ms) [5th, 95th] percentiles
1 10 100 1000 10000 100000 1000000	173 173 173 173 165 106 20	$ \begin{bmatrix} 10, \ 24 \\ 10, \ 24 \end{bmatrix} \\ \begin{bmatrix} 10, \ 24 \\ 10, \ 24 \end{bmatrix} \\ \begin{bmatrix} 10, \ 24 \\ 10, \ 24 \end{bmatrix} \\ \begin{bmatrix} 10, \ 24 \\ 14, \ 29 \end{bmatrix} \\ \begin{bmatrix} 52, \ 79 \end{bmatrix} $

Mobius has been used as oneM2M server

The simulated scene contains the digital twin of the automation system $% \left({{{\rm{D}}_{{\rm{B}}}}_{{\rm{A}}}} \right)$

Conclusion and future work

- ► We integrated a *pointing-based HMI* in the framework of an industrial cyber-physical system compliant with the *IEC 61499 standard*
- Both advantages and drawbacks of using such HMI to establish an interaction with a system of conveyor belts have been discussed
- ▶ We discussed the *novel* integration required to use the proposed HMI with an IEC 61499 automation runtime, which allows the actual deployment within an industrial setup
- Feasibility tests in simulation showed that the interaction requirements are respected by our integration, paving the road towards the deployment on real systems
- ► Future work aims at testing the HMI within a *real Industry 4.0 demonstrator*

Stay tuned and check out our activity on the pointing-based HMI https://idsia-robotics.github.io/pointing/

Thank you for your attention

