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Visual Servoing (VS) at a glance

I The camera is moved to a desired pose using visual feedback

I In normal conditions, VS realizes simple trajectories

I More complex motion can be achieved adding tasks or constraints
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Dynamical Systems (DS) at a glance

I Complex motion is learned by imitating previous demonstrations

I DS realize imitation learning keeping the original controller stability

I DS are strictly dependent on proprioception initial
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Motivation

I Realize easy-to-use and adaptive robot controllers

I No explicit coding of additional skills

I Integrate exteroception to adapt to environment changes

Proposed Solution: Combine DS and VS

I DS enable additional skills without explicitly coding them into VS

I VS integrates exteroception to adapt DS to environment changes

I The combination benefit is shown by applying 3 existing DS methods to VS

I Reshaped Dynamical System (RDS) [1]

I Control Lyapunov Function-based Dynamic Movements (CLF-DM) [2]

I Fast Diffeomorphic Matching (FDM) [3]
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Dataset and Simulation Analysis

LASA dataset [4] extended with visual features trajectories
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RDS CLF-DM FDM

METHOD HYPER. POS. ERR. [mm] VEL. ERR. [mm/s] FEAT. ERR. [pixels] TRAIN. TIME [ms]
RDS 7 25± 39 105± 72 9± 15 546± 1431
RDS 11 17± 13 86± 42 6± 5 697± 1540

CLF-DM 7 + 2 36± 55 121± 102 14± 21 9298± 4026
CLF-DM 11 + 2 19± 14 82± 52 7± 5 9291± 3886

FDM 150 60± 11 118± 45 14± 6 173± 376
FDM 50 59± 11 120± 45 14± 6 53± 105

Dataset and code of two DS methods in a simulated VS are available at
https://github.com/matteosaveriano/ilvs

← Scan the QR code!

Peg-in-Hole Experiments

standard VS fails at avoiding collision DS-based VS successfully realizes the task, also with a shifted target

video available at https://youtu.be/aRO93O_fpC8 (IDSIA’s YouTube Channel)

Future Work

I Coding duties can be even more reduced removing the explicit image processing

I Our approach can ease the visual controller deployment in complex platforms like humanoids

I Integration with interaction strategies can ease both data collection and more advanced tasks
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