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Abstract— In this extended abstract, we propose a classifier
to enable service robots to proactively detect the “intention
to interact” of human users before the interaction actually
begins. To this end, we use information about the user’s motion,
such as their planar pose and linear velocity, that can be
easily detected by available state-of-the-art sensors. We report
preliminary experiments of our detection module, validated
using a dataset comprising 3442 sequences collected in an
everyday-life scenario. The analysis carried out on this dataset
opens interesting questions and challenges, that pave the road
of our development towards novel scenarios to investigate.

I. INTRODUCTION

Social robots are very useful to provide services like
reception [1]; hospitality [2] or home assistance [3]; navi-
gation guidance [4]; personal care [5]; object delivery [6].
In these contexts, the understanding of the “human intention
to interact” is crucial to make services proactive and friendly,
and increasing their social acceptance. In fact, many human
operators normally interpret other people’s body language
and social cues, and thus anticipate the needs of who is
manifesting the intention to interact. A service robot able
to replicate such human behavior would be effective and
well-accepted by users. To this end, it should be able
to (i) keep track of nearby people; (ii) predict when an
approaching person intends to interact with it; and (iii) react
accordingly. The first skill can be solved by off-the-shelf
tools. The second, instead, is more challenging and it is the
problem that we decide to tackle. Then, once the intention is
detected, reaction strategies to implement the third skill can
be developed according to the specific robot.

This extended abstract describes preliminary results for
a learning-based method that allows the robot to classify
whether each tracked person intends to interact. The user’s
body motion, detected by off-the-shelf systems, is used to
compute in real-time the probability that the person will
interact. Some questions remain open and challenges need
to be addressed, as discussed in the conclusions.

II. APPROACH

Let us consider a robot standing in an environment shared
with humans. During normal operations, people routinely
pass nearby the robot, entering and exiting the robot’s
working space; occasionally, some users engage with the
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Fig. 1. In a human-robot interaction context, when properly approaching
the robot, a user is classified as intending to interact (first two snapshots);
otherwise it is classified as non-interacting (right).

robot. We also assume that the robot is equipped with sensors
capable of detecting and tracking people. In particular, using
the Microsoft Azure kinect [7], it is possible to measure
the planar pose, head orientation, and linear velocity of the
people entering the sensor’s field of view. These pieces of
information are indicative of how the users move nearby the
robot. Interpreting this kind of data, we tackle the problem
of predicting the intention of a person to interact with the
robot before the interaction actually begins.

To solve this problem, we train a binary classifier that
takes as input the tracked person’s motion and outputs the
probability that that person will interact with the robot.
The classifier is trained on a dataset composed of several
sequences. A sequence represents a person tracked by the
robot over time and is composed of multiple samples (one
per timestep). The sequence begins when the person is first
seen by the sensor; it ends when the person either begins
their interaction with the robot or exits the sensor’s field
of view without interacting. All the samples in a sequence
are marked with the same label (true or false) according to
whether the user interacted or not. We collect a real-world
dataset of human-machine interactions in which humans
behave naturally: in particular, we place a sensor alongside an
espresso coffee machine placed in a break area neighboring
a corridor of an office building. During the day, many people
pass through the corridor, some stop in the break area,
and some of them approach the machine to take a coffee.
The data about the people’s motion extracted by the sensor
fill a dataset of 3422 unique sequences of tracked users,
accounting for more than 12 hours of recorded data.

In our scenario, sequences should be ideally labeled by



considering when a user operates the machine, e.g. by
pressing a button on it. However, in our case, we do not
have access to the machine firmware and we can not read its
internal state. Therefore, we rely on the sensor used for data
collection to automatically generate labels. To do so, we use
the following heuristic: interaction is detected when a person
stays very close (i.e. within 1 m) to the coffee machine for
an uninterrupted period of 5 seconds; we assume that the
interaction takes place at the end of this period; all samples
in the preceding 10 seconds are labeled as positives.

III. PRELIMINARY RESULTS

We use the “coffee machine” dataset to train simple
classifiers. To evaluate the results, we consider all frames
from all the sequences to compute the Area Under the ROC
Curve (AUROC): a robust binary classification metric that
does not depend on a choice of the classifier’s threshold,
and ranges between 0.5 (for a non-informative classifier, e.g.
one always reporting the majority class) and 1.0 (an ideal
classifier). When computed on all testing samples pooled
together, the classifiers score very high (the AUROC is larger
than 0.9): the reason is that the person’s distance from the
device is a very strong cue of whether the person ends up
interacting with it. Then, we split all the samples into seven
distance bins and compute metrics for each bin, to evaluate
the ability of our approach to classifying a person’s intention
to interact independently on their distance from the device.
The main conclusion that we derive is that rich information
about the user motion (planar pose, head orientation, and
linear velocity together) yields better results (AUROC > 0.7)
w.r.t. considering a subset of such information. However,
when using rich sensory information, predicting performance
at short distances can result in a more complicated task
(AUROC ≈ 0.65) than at long distances (AUROC ≈ 0.8).
We believe that this is due to our dataset: it is difficult to
understand whether someone close to the machine is there
to interact or to do something else. By contrast, people that
are approaching from afar, exhibit clearer intention in their
body language and gaze, making additional features much
more valuable in that case. For a qualitative evaluation of the
classifier, see Fig. 1, where we deployed our approach in an
online experiment; both the external view on the experiment
scene and the corresponding snapshots taken by the sensor,
showing also the classifier output, can be evaluated.

IV. DISCUSSION AND OPEN CHALLENGES

We have presented a classifier to predict the user’s inten-
tion to interact with a robot, using a dataset of tracked users
interacting with the system in a real-life scenario. The system
has been validated on the testing partition of the dataset
and with an online experiment. Our preliminary study opens
several questions and challenges that we aim at solving in
the future, paving the road toward further developments.

An important aspect of our study is the evaluation of
the results, not only from the technical perspective of the
used methodology but also at the level of social acceptance

among users. To this end, we plan to enrich our human-
robot interaction analysis using psychological tools, which
have been used to investigate the interactions happening
between humans. On the same line, we will better investigate
proxemics notions, such as social spaces [8], or nonverbal
communications modalities [9], [10] and other tools from
the human-robot interaction community.

A more extensive data collection campaign will be surely
beneficial to our work. Some datasets are presented [11]
and available online [12] for studying social interactions.
However, the specificity of the problems that we want to
address requires the collection of ad hoc information. In
particular, we plan to collect datasets in public environments
and different social contexts.

Finally, we plan to test our framework with different
robotic platforms and in different interaction contexts. With
this regard, in the current study, we did not consider how
the appearance of the robot would affect the interaction [13]
and, consequently, the intention of the user. In the future,
we will consider this aspect by proposing experiments also
with human-sized robots. Furthermore, we will challenge
our method with more complex scenarios, where multiple
interacting users need to be detected and classified.
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[5] J. Mišeikis, P. Caroni, P. Duchamp, A. Gasser, R. Marko,
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