

Error norm tracking with velocity imitation

- \triangleright Very complex trajectories follow non-exponential, non-monotonic decay of η
- ► We propose to imitate *demonstrated velocities* as a secondary task and track a desired norm taken from data

$$\mathbf{v} = \underbrace{\left(\dot{\eta}_{d} - \lambda(\eta - \eta_{d})\right) \mathbf{L}_{\eta}^{+} \mathbf{e}}_{\text{stable error norm}} + \underbrace{\mathbf{P}_{\eta} \boldsymbol{\sigma}}_{\text{velocity}}_{\text{imitation}}$$

Simulation analysis on the LASA dataset

Dynamical System-based Imitation Learning for Visual Servoing using the Large Projection Formulation

¹IDSIA, USI-SUPSI, Lugano, Switzerland. Email: antonio.paolillo@idsia.ch ²CNRS, Univ. of Rennes, Inria, IRISA, Rennes, France. Email: prg@irisa.fr ³DII, University of Trento, Italy. Email: matteo.saveriano@unitn.it

Learning VS tasks

► We consider data from *D* visual task demonstrations of *N* samples: $\mathcal{D} = \{ \boldsymbol{e}_{n}^{d}, \, \boldsymbol{v}_{n}^{d} \}_{n=1,d=1}^{N,D}, \quad \mathcal{H} = \{ \tau_{n}^{d}, \, \dot{\eta}_{n}^{d} \}_{n=1,d=1}^{N,D}$ where τ_n^d in a time-like variable linearly increasing from 0 to 1 The velocity to imitate is inferred from \mathcal{D} using the current value of e $\boldsymbol{\sigma} = \boldsymbol{r}_{\sigma} \left(\boldsymbol{e} \,|\, \mathcal{D}
ight)$ \triangleright Time derivative of η_d is taken from \mathcal{H} using a time-like variable τ $\dot{\eta}_{d} = \mathbf{r}_{\eta} \left(\tau \,|\, \mathcal{H} \right)$

Robot experiment

In complex tasks, IL allows easy robot programming, and VS allows to adapt the learned motion to changes in the environment

Antonio Paolillo¹, P. Robuffo Giordano², M. Saveriano³

ILVS using the large projector

Standard VS zeroes the error e between measured and desired features $\mathbf{v} = -\lambda \mathbf{L}^+ \mathbf{e}$

A secondary task can be added using the projector operator $P = I - L^+ L$ $\mathbf{v} = -\lambda \mathbf{L}^+ \mathbf{e} + \mathbf{P} \boldsymbol{\sigma}$

where σ is camera velocity realizing the secondary task

- To enable more space for the secondary task one can use the error norm $oldsymbol{v} = -\lambda\etaoldsymbol{L}_\eta^+ + oldsymbol{P}_\etaoldsymbol{\sigma}, \quad \eta = \|oldsymbol{e}\|$
- This control structure is used to *imitate complex motion* and *keep stability*

- where \boldsymbol{v} is the camera velocity, λ the gain and \boldsymbol{L} the image Jacobian

