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Why is intention detection useful for HRI?
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Problem definition and proposed solution

» Long-range prediction of the intent to interact using only non-verbal cues

* Include gaze cues and facial landmarks to enhance performances
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 Sensor: Azure Kinect

o High resolution RGB images

o Body Tracking (BT)
= Tracks up to 32 body joints poses in 3D

Feature Extraction Pipeline

Intention to User probability
to interact
Interact
Classifier

HANDTIP_RIGHT

RGB+BT

HAND_RIGHT

O

()
THUMB_RIGHT

WRIST_RIGHT
0O

NO!
EYE_RIGHT ®

EAR_RIGHT @

CLAVICLELRIGH” O
() 7% \
2 .
SHOULDER” «IGHT
ELBOW_RIGHT

SE

= EYE_LEFT

\J

e ® EAr_LEFT
® HEAD

ECK

|\
O o CLAVIGLE LEFT
3 ®

HANDTIP_LEFT

HAND_LEFT
WRIST_LEFT

)

SHOULDER_LEFT

@ JSPINE_CHEST

®) SPINE_NAVAL

PELVIS

HIP_RIGHT O=O=>0) HIP_LEFT

KNEE_RIGHT @

ANKLE_RIGHT “1@,

FOOT_RIGHT 1@,

O KNEE_LEFT

(@) ANKLE_LEFT

O FOOT_LEFT

ELBOW_LEFT

THUMB_LEFT



|
RGB Facial Mutual
acial features S vy g P

Extraction Classifier Intention to | User probability
Interact fofnteract
Body Joint User en
Tracking /1 Data Classifier
UV

Feature Extraction Pipeline

« Facial feature: MediaPipe

o Track up to 478 facial landmarks

o Get unified user data vector containing:
» Body joints poses

= Facial landmarks

RGB+BT > User Data >
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* Predict the probability that someone is looking at the robot camera

Only head and eyes movements

S. Arreghini, G. Abbate, A. Giusti, and A. Paolillo, "A Long-Range Mutual Gaze Detector for HRI", HRI 2024
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Stateful model better captures problem dynamics

« Classifier architectures
o Stateless Random Forest (RF)
o Stateful Long-Short Term Memory (LSTM)

* Input features are composition of:

o Body joint information
= Chest (C)
= Head (H)
o Mutual gaze probability (M)

o Facial landmarks (L)
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Stateful model better captures problem dynamics

« Classifier architectures
o Stateless Random Forest (RF)
o Stateful Long-Short Term Memory (LSTM)

* Input features are composition of:
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Performance gains across all distances
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 Full model improves AUROC consistently across all distances (+5 — +11%)
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Introducing facial and gaze cues helps
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* Full model consistenly outperforms Baseline model across considered metrics



Introducing facial and gaze cues helps
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* Full model consistenly outperforms Baseline model across considered metrics

» Achieving same accuracy Full model gain 0.85 m in mean advance detection distance
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Self-supervised adaptation
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« System can adapt to new environments gathering and self-labelling data autonomously
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Self-supervised adaptation
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Self-supervised adaptation
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« System can adapt to new environments gathering and self-labelling data autonomously
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Single user






» Facial features and gaze cues significantly = 6%

help in the intention detection process s "
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» Deployment and validation in the wild 3
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Project website:
bit.ly/idsia-iid-gaze




