

Predicting the Intention to Interact with a Service Robot: the Role of Gaze Cues

Simone Arreghini, Gabriele Abbate, Alessandro Giusti and Antonio Paolillo

IDSIA USI-SUPSI, Lugano, Switzerland

Why is intention detection useful for HRI?

• More **natural** interactions

• React only to interested users

Increase social acceptance

Problem definition and proposed solution

- Long-range prediction of the intent to interact using only non-verbal cues
- Include gaze cues and facial landmarks to enhance performances

Sensor signals

RGB Mutual Facial Images Facial Feature Gaze Info Features Mutual Gaze Extraction Classifier User probability Intention to to interact Interact Body Joint User Classifier Tracking Data Feature Extraction Pipeline

- Sensor: Azure Kinect
 - $_{\odot}\,$ High resolution RGB images
 - \circ Body Tracking (BT)
 - Tracks up to 32 body joints poses in 3D

Facial features

- Facial feature: MediaPipe
 - $_{\odot}\,$ Track up to 478 facial landmarks
 - o Get unified user data vector containing:
 - Body joints poses
 - Facial landmarks

Mutual gaze

• Predict the probability that someone is looking at the robot camera

S. Arreghini, G. Abbate, A. Giusti, and A. Paolillo, "A Long-Range Mutual Gaze Detector for HRI", HRI 2024

Classifier architectures

- $_{\odot}\,$ Stateless Random Forest (RF)
- **Input features** are composition of:
 - $\circ\,$ Body joint information
 - Chest (C)
 - Head (H)
 - $_{\odot}\,$ Mutual gaze probability (M)
 - $_{\odot}$ Facial landmarks (L)

Classifier architectures

- Stateless Random Forest (RF)
- **Input features** are composition of:
 - $_{\odot}\,$ Body joint information
 - Chest (C)
 - Head (H)
 - $\circ\,$ Mutual gaze probability (M)
 - $_{\odot}$ Facial landmarks (L)

Classifier architectures

- $_{\odot}\,$ Stateless Random Forest (RF)
- **Input features** are composition of:
 - $_{\odot}\,$ Body joint information
 - Chest (C)
 - Head (H)
 - $_{\odot}\,$ Mutual gaze probability (M)
 - Facial landmarks (L)

- Classifier architectures
 - $_{\odot}\,$ Stateless Random Forest (RF)
- **Input features** are composition of:
 - $\circ\,$ Body joint information
 - Chest (C)
 - Head (H)
 - $_{\odot}\,$ Mutual gaze probability (M)
 - Facial landmarks (L)

Performance gains across all distances

• Full model improves AUROC consistently across all distances (+5 – +11%)

Introducing facial and gaze cues helps

• Full model consistenly outperforms Baseline model across considered metrics

Introducing facial and gaze cues helps

- Full model consistenly outperforms Baseline model across considered metrics
- Achieving same accuracy Full model gain 0.85 m in mean advance detection distance

Single user

Conclusions and Future Work

- Facial features and gaze cues significantly help in the intention detection process
- Explore the impact of robot reactions on users perceptions
- Deployment and validation in the wild

Project website: bit.ly/idsia-iid-gaze