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Outline

I What is visual servoing?

I Why do we need visual servoing?

I How do we build visual servoing?

I What can we do with visual servoing?
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Definition of Visual Servoing (VS)

“ VS is the use of computer vision data in the servo loop
that controls the motion of a robot ”

“ VS is the action taken by a vision-based control ”

“ VS is the way to provide a control algorithm with visual
feedback to reach a desired target ”
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Block diagram & scheme classification
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Two main VS schemes:

1. Position-based visual servoing (PBVS)

− More complicated image processing (need to reconstruct a pose)
+ Relatively easier control law

2. Image-based visual servoing (IBVS)

+ Easier image processing (it is a features extraction)
− More complicated control law

I Other options are also possible, such as 2.5D VS
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IBVS block diagram
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Most of the lecture focuses on IBVS

reference desired visual features s∗

measurement current visual features s

error visual error e = s− s∗

commands velocities command v
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Definition of visual feature

I In computer vision, it is the set of pixels for which the link between
photometric measurement and geometric primitives can be established

I It is the attempt to summarize the richness of data coming from the
camera video stream

I Be aware of the information loss that this “summary” involves

I It is the gist of the scene needed to control the robot

I It is the summary information got from the captured image, needed to
close the VS loop and achieve a desired robotic behavior
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Why visual features?

Consider the task of looking at the red object

captured image
240× 320 pixels
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Why visual features?

Consider the task of looking at the red object

captured image
240× 320 pixels

coordinates of the object centroid
2 scalar numbers
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An example of image processing algorithm
I Computer vision community provides many ready-to-use tools

original image color filtering smoothing

erode & dilate inversion blob detection

I All these operations are available in the opencv library, for example
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Examples of visual features

points lines reconstructed points

countours image moments pixel luminance

In this lecture we focus on point visual features
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Eye-to-hand & eye-in-hand configuration

fixed
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I Eye-to-hand: actuated target observed by a camera (left)

I Eye-in-hand: actuated camera observing a target (right)

In this lecture we focus on eye-in-hand configurations
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Working principle (with an hand-held camera)

camera

desired visual features

measured visual features

features of interest

image plane

s
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The high-level task consists in moving the camera to a desired pose
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Working principle (with an hand-held camera)

camera

desired visual features

measured visual features

features of interest

camera velocity

s∗

s

v

e = 0

The cartesian task is actually translated in a visual task
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Computing the VS control law

The VS control law is obtained in three steps

1. Model design: the features motion is related to the camera motion as

ṡ = Lv (1)

where L is the interaction matrix

2. Stable error dynamics: we want s→ s∗, that is e = (s− s∗)→ 0

ė = ṡ− ṡ∗ = −λe, λ > 0 (2)

where λ is the control gain

3. Controller computation: (1) in (2) with a constant target (ṡ∗ = 0)

ė = −λe = ṡ = Lv =⇒ v = −λL+e
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Camera projection model (1/5)

I Frontal pin-hole camera model

camera
frame

image
plane

inertial
frame

focal
lenght

(x , y)

(X ,Y ,Z)

zc

xc

yc

f

R, t

I Perspective projection

x = f
X

Z
, y = f

Y

Z

I Sometimes normalized coordinates are used, considering f = 1

I Also used to computed the interaction matrix (go to slide 18)
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Camera projection model (2/5)

I In a more compatc way, using homogeneous coordinates:

Z

(
x
y
1

)
=

(
f 0 0 0
0 f 0 0
0 0 1 0

) X
Y
Z
1


I The depth Z is unkown (remember the lost of information): we call it

as parameter ζ in the left-hand side of the equation

I For convenience, we write the matrix as(
f 0 0 0
0 f 0 0
0 0 1 0

)
=

(
f 0 0
0 f 0
0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0

)
I In general, the Cartesian point can be expressed in the inertial frame X

Y
Z
1

 =

(
R t

0 0 0 1

)−1 X0

Y0

Z0

1


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Camera projection model (3/5)
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I The camera ideal model results to be

ζ

(
x
y
1

)
=

(
f 0 0
0 f 0
0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0

)(
R t

0 0 0 1

)−1 X0

Y0

Z0

1


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Camera projection model (4/5)

I However, the features are measured in pixels, with coordinates (u, v),
which are related to (x , y) through the following relationship

u = u0 +
x

ρw
, v = v0 +

y

ρh

where (ρw , ρh) is the size of the pixel and (u0, v0) is the central point

I Using homogenous coordinates and writing in compact form: u
v
1

 =

 1/ρw 0 u0
0 1/ρh v0
0 0 1

 x
y
1



I Used to compute the interaction matrix (go to slide 20)
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Camera projection model (5/5)

I Putting all together

ζ

 u
v
1


︸ ︷︷ ︸

p̃

=

intrinsic︷ ︸︸ ︷ f /ρw 0 u0

0 f /ρh v0
0 0 1


︸ ︷︷ ︸

K

 1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P

extrinsic︷ ︸︸ ︷ R t

0 0 0 1

−1

︸ ︷︷ ︸
0T−1

c


X0

Y0

Z0

1


︸ ︷︷ ︸

P̃

p̃ = K P
(
0Tc

)−1︸ ︷︷ ︸
C

P̃

I K is called intrinsic parameter matrix or calibration matrix

I P is called standard projection matrix

I 0Tc is obtained with a extrinsic calibration

I C is called camera matrix

I f /ρw and f /ρh are the focal lenght expressed in units of pixels

I From p̃ we obtain the model in pixels of our visual feature: s = (u, v)>
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Computation of the interaction matrix (1/3)

moving
camera

image
plane

s

fixed
observed

object
I The interaction matrix relates the velocity

of the feature to the velocity of the camera

ṡ =

(
u̇
v̇

)
= Lv = L

(
ν
ω

)
I Remember: eye-in-hand configuration

I From the perspective equation (see slide 13) we have

ẋ = f
ẊZ − XŻ

Z 2
=

f

Z
Ẋ − x

Z
Ż , ẏ = f

Ẏ Z − Y Ż

Z 2
=

f

Z
Ẏ − y

Z
Ż

I In compact form:

(
ẋ
ẏ

)
=

 f

Z
0 − x

Z

0
f

Z
− y

Z


 Ẋ

Ẏ

Ż


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Computation of the interaction matrix (2/3)

I The time derivative of the point expressed in Camera frame is related
to the velocity of the camera: Ẋ

Ẏ

Ż

 = −ν − ω ×

 X
Y
Z


that is Ẋ

Ẏ

Ż

 =

 −1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0

( ν
ω

)

I Substituting:

(
ẋ
ẏ

)
=

 − f

Z
0

x

Z

xY

Z
−f − xX

Z

fY

Z

0 − f

Z

y

Z
f +

yY

Z
−yX

Z
− fX

Z

( ν
ω

)
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Computation of the interaction matrix (3/3)

I Considering that X = xZ/f and Y = yZ/f :

(
ẋ
ẏ

)
=

 − f

Z
0

x

Z

xy

f
−f − x2

f
y

0 − f

Z

y

Z
f +

y 2

f
−xy

f
−x

( ν
ω

)

I From the metric-pixel conversion (see slide 16) we have that

u̇ = ẋ/ρw , v̇ = ẏ/ρh

x = (u − u0)ρw = ūρw , y = (v − v0)ρh = v̄ρh

I Substituting:(
u̇
v̇

)
=

 − f

ρwZ
0

ū

Z

ūv̄ρh
f

−f − ū2ρw
f

v̄

0 − f

ρhZ

v̄

Z
f +

v̄ 2ρh
f

− ūv̄ρh
f

−ū


︸ ︷︷ ︸

L

(
ν
ω

)
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(Some) practical aspects of VS

I One point is not enough to uniquely determine the pose of the camera
at convergence

I For example, if we want to control the motion of the camera in the
3D space, at least three points have to be used

I This means that the information used in the control law is the stack
of three sets:

s =

 s1
s2
s3

, s∗ =

 s∗1
s∗2
s∗3

, L =

 L1

L2

L3



I The choise of the visual features, their number, and their desired value
is part of the algorithm design
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Application example (1/5): pick-and-place

[video]

Task: place an object in a box
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Application example (2/5): robotic manipulation

[video]

Task: open/close a drawer
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Application example (3/5): corridor navigation

[video]

Task: navigate at the center of a corridor
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Application example (4/5): driving a car with a
humanoid

[video]

Task: drive the car at the center of the road
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Application example (5/5): space operation with a
humanoid

[video]

Task: re-orient the body with respect to a tool, in space
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PBVS block diagram

VS
Control

Robot
& Camera

reference error commands image

Image
Processing

measurement

-

reference desired camera pose s∗

measurement current camera pose s

error Cartesian error e = s− s∗

commands velocities command v
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PBVS and the camera pose reconstruction problem

I PBVS implies the reconstruction of the camera pose, which is
normally a complex task

I A number of modules can be used

I Model-based pose reconstruction modules

I Fiducial marker detectors (e.g., April tag)

I Visual Odometry

I Visual Simultaneous Localization and Mapping (V-SLAM)

I Machine learning-based approaches, such as self-supervised learning
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A simple PBVS application example

[video]

Task: keep the robot camera at a given pose from the marker

Credits: ViSP (by INRIA Rennes, France)
https://visp-doc.inria.fr/doxygen/visp-daily/index.html

https://visp-doc.inria.fr/doxygen/visp-daily/index.html
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Final remark

I What is visual servoing?

I Vision-based control of robot

I Why do we need visual servoing?

I Translate cartesian tasks into visual tasks

I How do we build visual servoing?

I Control law and visual feedback definition

I What can we do with visual servoing?

I Navigation, manipulation, operation...
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More advanced topics

I Standards VS is purely reactive: its performace can be improved by
using predictive techniques, such as model predictive control

I The measurement of the visual features can be robustified by
extending both control and perception algorithm; for example

I on the control side, adaptive or weighing mechanisms can be used

I on the perception side, machine learning tools can be employed

I VS can be applied to many different robotic platforms; for humanoids
has to be computed accordingly to the whole-body motion

I Further developments deal with the integration of VS with
optimization, planning and machine learning methodologies
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Thank you for the attention!

Q/A time


