
1/33

GMAR Robotics Summer School 2021

VISUAL SERVOING
— for —

NAVIGATION & MANIPULATION

Antonio Paolillo

Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI

Lugano, Switzerland

�
Innsbruck - August 25, 2021

2/33

Outline

I What is visual servoing?

I Why do we need visual servoing?

I How do we build visual servoing?

I What can we do with visual servoing?

3/33

Definition of Visual Servoing (VS)

“ VS is the use of computer vision data in the servo loop
that controls the motion of a robot ”

“ VS is the action taken by a vision-based control ”

“ VS is the way to provide a control algorithm with visual
feedback to reach a desired target ”

4/33

Block diagram & scheme classification

VS
Control

Robot
& Camera

reference error commands image

Image
Processing

measurement

-

4/33

Block diagram & scheme classification

VS
Control

Robot
& Camera

reference error commands image

Image
Processing

measurement

-

Two main VS schemes:

1. Position-based visual servoing (PBVS)

− More complicated image processing (need to reconstruct a pose)
+ Relatively easier control law

2. Image-based visual servoing (IBVS)

+ Easier image processing (it is a features extraction)
− More complicated control law

I Other options are also possible, such as 2.5D VS

5/33

IBVS block diagram

VS
Control

Robot
& Camera

reference error commands image

Image
Processing

measurement

-

Most of the lecture focuses on IBVS

reference desired visual features s∗

measurement current visual features s

error visual error e = s− s∗

commands velocities command v

6/33

Definition of visual feature

I In computer vision, it is the set of pixels for which the link between
photometric measurement and geometric primitives can be established

I It is the attempt to summarize the richness of data coming from the
camera video stream

I Be aware of the information loss that this “summary” involves

I It is the gist of the scene needed to control the robot

I It is the summary information got from the captured image, needed to
close the VS loop and achieve a desired robotic behavior

7/33

Why visual features?

Consider the task of looking at the red object

captured image
240× 320 pixels

7/33

Why visual features?

Consider the task of looking at the red object

captured image
240× 320 pixels



 157
182
202

 157
182
202

 157
182
202

 · · ·

 82
106
130


 157

182
202

 157
182
202

 157
182
202

 · · ·

 82
106
130


.
.
.

. . .
.
.
. 51

61
71

 51
61
71

 50
60
70

 · · ·

 29
41
53




how it looks like in the PC

240× 320× 3 matrix of numbers

7/33

Why visual features?

Consider the task of looking at the red object

captured image
240× 320 pixels

coordinates of the object centroid
2 scalar numbers

8/33

An example of image processing algorithm
I Computer vision community provides many ready-to-use tools

original image color filtering smoothing

erode & dilate inversion blob detection

I All these operations are available in the opencv library, for example

9/33

Examples of visual features

points lines reconstructed points

countours image moments pixel luminance

In this lecture we focus on point visual features

10/33

Eye-to-hand & eye-in-hand configuration

fixed
camera

image
plane

s

moving
observed

object

moving
camera

image
plane

s

fixed
observed

object

I Eye-to-hand: actuated target observed by a camera (left)

I Eye-in-hand: actuated camera observing a target (right)

In this lecture we focus on eye-in-hand configurations

11/33

Working principle (with an hand-held camera)

camera

desired visual features

measured visual features

features of interest

image plane

s
∗

s

desired
camera

pose

The high-level task consists in moving the camera to a desired pose

11/33

Working principle (with an hand-held camera)

camera

desired visual features

measured visual features

features of interest

camera velocity

s∗

s

v

e = 0

The cartesian task is actually translated in a visual task

12/33

Computing the VS control law

The VS control law is obtained in three steps

1. Model design: the features motion is related to the camera motion as

ṡ = Lv (1)

where L is the interaction matrix

2. Stable error dynamics: we want s→ s∗, that is e = (s− s∗)→ 0

ė = ṡ− ṡ∗ = −λe, λ > 0 (2)

where λ is the control gain

3. Controller computation: (1) in (2) with a constant target (ṡ∗ = 0)

ė = −λe = ṡ = Lv =⇒ v = −λL+e

13/33

Camera projection model (1/5)

I Frontal pin-hole camera model

camera
frame

image
plane

inertial
frame

focal
lenght

(x , y)

(X ,Y ,Z)

zc

xc

yc

f

R, t

I Perspective projection

x = f
X

Z
, y = f

Y

Z

I Sometimes normalized coordinates are used, considering f = 1

I Also used to computed the interaction matrix (go to slide 18)

14/33

Camera projection model (2/5)

I In a more compatc way, using homogeneous coordinates:

Z

(
x
y
1

)
=

(
f 0 0 0
0 f 0 0
0 0 1 0

) X
Y
Z
1


I The depth Z is unkown (remember the lost of information): we call it

as parameter ζ in the left-hand side of the equation

I For convenience, we write the matrix as(
f 0 0 0
0 f 0 0
0 0 1 0

)
=

(
f 0 0
0 f 0
0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0

)
I In general, the Cartesian point can be expressed in the inertial frame X

Y
Z
1

 =

(
R t

0 0 0 1

)−1 X0

Y0

Z0

1



15/33

Camera projection model (3/5)

camera
frame

image
plane

inertial
frame

focal
lenght

(x , y)

(X ,Y ,Z)

zc

xc

yc

f

R, t

I The camera ideal model results to be

ζ

(
x
y
1

)
=

(
f 0 0
0 f 0
0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0

)(
R t

0 0 0 1

)−1 X0

Y0

Z0

1



16/33

Camera projection model (4/5)

I However, the features are measured in pixels, with coordinates (u, v),
which are related to (x , y) through the following relationship

u = u0 +
x

ρw
, v = v0 +

y

ρh

where (ρw , ρh) is the size of the pixel and (u0, v0) is the central point

I Using homogenous coordinates and writing in compact form: u
v
1

 =

 1/ρw 0 u0
0 1/ρh v0
0 0 1

 x
y
1



I Used to compute the interaction matrix (go to slide 20)

17/33

Camera projection model (5/5)

I Putting all together

ζ

 u
v
1


︸ ︷︷ ︸

p̃

=

intrinsic︷ ︸︸ ︷ f /ρw 0 u0

0 f /ρh v0
0 0 1


︸ ︷︷ ︸

K

 1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P

extrinsic︷ ︸︸ ︷ R t

0 0 0 1

−1

︸ ︷︷ ︸
0T−1

c


X0

Y0

Z0

1


︸ ︷︷ ︸

P̃

p̃ = K P
(
0Tc

)−1︸ ︷︷ ︸
C

P̃

I K is called intrinsic parameter matrix or calibration matrix

I P is called standard projection matrix

I 0Tc is obtained with a extrinsic calibration

I C is called camera matrix

I f /ρw and f /ρh are the focal lenght expressed in units of pixels

I From p̃ we obtain the model in pixels of our visual feature: s = (u, v)>

18/33

Computation of the interaction matrix (1/3)

moving
camera

image
plane

s

fixed
observed

object
I The interaction matrix relates the velocity

of the feature to the velocity of the camera

ṡ =

(
u̇
v̇

)
= Lv = L

(
ν
ω

)
I Remember: eye-in-hand configuration

I From the perspective equation (see slide 13) we have

ẋ = f
ẊZ − XŻ

Z 2
=

f

Z
Ẋ − x

Z
Ż , ẏ = f

Ẏ Z − Y Ż

Z 2
=

f

Z
Ẏ − y

Z
Ż

I In compact form:

(
ẋ
ẏ

)
=

 f

Z
0 − x

Z

0
f

Z
− y

Z


 Ẋ

Ẏ

Ż



19/33

Computation of the interaction matrix (2/3)

I The time derivative of the point expressed in Camera frame is related
to the velocity of the camera: Ẋ

Ẏ

Ż

 = −ν − ω ×

 X
Y
Z


that is Ẋ

Ẏ

Ż

 =

 −1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0

(ν
ω

)

I Substituting:

(
ẋ
ẏ

)
=

 − f

Z
0

x

Z

xY

Z
−f − xX

Z

fY

Z

0 − f

Z

y

Z
f +

yY

Z
−yX

Z
− fX

Z

(ν
ω

)

20/33

Computation of the interaction matrix (3/3)

I Considering that X = xZ/f and Y = yZ/f :

(
ẋ
ẏ

)
=

 − f

Z
0

x

Z

xy

f
−f − x2

f
y

0 − f

Z

y

Z
f +

y 2

f
−xy

f
−x

(ν
ω

)

I From the metric-pixel conversion (see slide 16) we have that

u̇ = ẋ/ρw , v̇ = ẏ/ρh

x = (u − u0)ρw = ūρw , y = (v − v0)ρh = v̄ρh

I Substituting:(
u̇
v̇

)
=

 − f

ρwZ
0

ū

Z

ūv̄ρh
f

−f − ū2ρw
f

v̄

0 − f

ρhZ

v̄

Z
f +

v̄ 2ρh
f

− ūv̄ρh
f

−ū


︸ ︷︷ ︸

L

(
ν
ω

)

21/33

(Some) practical aspects of VS

I One point is not enough to uniquely determine the pose of the camera
at convergence

I For example, if we want to control the motion of the camera in the
3D space, at least three points have to be used

I This means that the information used in the control law is the stack
of three sets:

s =

 s1
s2
s3

, s∗ =

 s∗1
s∗2
s∗3

, L =

 L1

L2

L3



I The choise of the visual features, their number, and their desired value
is part of the algorithm design

22/33

Application example (1/5): pick-and-place

[video]

Task: place an object in a box

23/33

Application example (2/5): robotic manipulation

[video]

Task: open/close a drawer

24/33

Application example (3/5): corridor navigation

[video]

Task: navigate at the center of a corridor

25/33

Application example (4/5): driving a car with a
humanoid

[video]

Task: drive the car at the center of the road

26/33

Application example (5/5): space operation with a
humanoid

[video]

Task: re-orient the body with respect to a tool, in space

27/33

PBVS block diagram

VS
Control

Robot
& Camera

reference error commands image

Image
Processing

measurement

-

reference desired camera pose s∗

measurement current camera pose s

error Cartesian error e = s− s∗

commands velocities command v

28/33

PBVS and the camera pose reconstruction problem

I PBVS implies the reconstruction of the camera pose, which is
normally a complex task

I A number of modules can be used

I Model-based pose reconstruction modules

I Fiducial marker detectors (e.g., April tag)

I Visual Odometry

I Visual Simultaneous Localization and Mapping (V-SLAM)

I Machine learning-based approaches, such as self-supervised learning

29/33

A simple PBVS application example

[video]

Task: keep the robot camera at a given pose from the marker

Credits: ViSP (by INRIA Rennes, France)
https://visp-doc.inria.fr/doxygen/visp-daily/index.html

https://visp-doc.inria.fr/doxygen/visp-daily/index.html

30/33

Final remark

I What is visual servoing?

I Vision-based control of robot

I Why do we need visual servoing?

I Translate cartesian tasks into visual tasks

I How do we build visual servoing?

I Control law and visual feedback definition

I What can we do with visual servoing?

I Navigation, manipulation, operation...

31/33

More advanced topics

I Standards VS is purely reactive: its performace can be improved by
using predictive techniques, such as model predictive control

I The measurement of the visual features can be robustified by
extending both control and perception algorithm; for example

I on the control side, adaptive or weighing mechanisms can be used

I on the perception side, machine learning tools can be employed

I VS can be applied to many different robotic platforms; for humanoids
has to be computed accordingly to the whole-body motion

I Further developments deal with the integration of VS with
optimization, planning and machine learning methodologies

32/33

(Some) References

1. F. Chaumette, and S. Hutchinson, “Visual servo control: Part I. Basic approaches,” IEEE
Robotics & Automation Magazine, 2006, 13(4), pp. 82–90.

2. P. Corke. “Robotics, vision and control: fundamental algorithms in MATLAB”. Springer,
2017.

3. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. “Robotics: modelling, planning and
control.” Springer Science & Business Media, 2010.

4. Y. Ma, S. Soatto, J. Kosecka, S. Shankar Sastry. “An invitation to 3-D vision: from
images to geometric models.” Springer Science & Business Media, 2012.

5. A. De Luca, “Visual servoing,” slides of the Robotics 2 course given at Sapienza University
of Rome, Italy, 2020.

6. E. Marchand, F. Chaumette, “Feature tracking for visual servoing purposes,” Robotics
andAutonomous Systems, 2005, 52(1), pp.53–70.

7. E. Marchand, F. Spindler, F. Chaumette. “ViSP for visual servoing: a generic software
platform with a wide class of robot control skills,” IEEE Robotics & Automation
Magazine, 2005, 12(4), pp. 40–52.

8. F. Chaumette, “Image moments: a general and useful set of features for visual servoing,”
IEEE. Transactions on Robotics, 2004, 20(4), pp.713–723.

9. C. Collewet, E. Marchand, “Photometric visual servoing,” IEEE Transactions on Robotics,
2011, 27(4), pp.828–834.

10. A. Paolillo, A. Faragasso, G. Oriolo, M. Vendittelli, “Vision-based maze navigation for
humanoid robots,” Autonomous Robots, 41(2), pp. 293–309, 2017.

33/33

Thank you for the attention!

Q/A time

